

Clinical characteristics of seizure recurrence and epilepsy development in patients with alcohol-related seizures

Min Young Chun^{1,2,3} | Hyungmi An⁴ | Hye Ah Lee⁵ | Sungeun Hwang¹ |
Seungwon Chung¹ | Na-Young Kim¹ | Hyang Woon Lee^{1,6,7,8}

¹Department of Neurology, Ewha Womans University Mokdong Hospital, Seoul, South Korea

²Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea

³Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea

⁴Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, South Korea

⁵Clinical Trial Center, Ewha Womans University Mokdong Hospital, Seoul, South Korea

⁶Neurology and Medical Science, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Seoul, South Korea

⁷Computational Medicine, System Health Science & Engineering, Ewha Womans University, Seoul, South Korea

⁸Artificial Intelligence Convergence Graduate Programs, Ewha Womans University, Seoul, South Korea

Correspondence

Hyang Woon Lee, Departments of Neurology and Medical Science, Ewha Womans University School of Medicine and Ewha Medical Research Institute, Computational Medicine, System Health Science and Engineering, and Artificial Intelligence Convergence Graduate Programs, Ewha Womans University, Seoul, South Korea.

Email: leeh@ewha.ac.kr

Abstract

Background: Alcohol withdrawal is widely recognized as a trigger for acute symptomatic seizures among individuals with chronic alcohol consumption. While most alcohol withdrawal seizures occur shortly after cessation, chronic alcohol consumption can be associated with the development of epilepsy, necessitating anti-epileptic drug (AED) therapy. This study aimed to investigate the clinical characteristics, seizure recurrence, and epilepsy development in patients with alcohol-related seizures and to identify prognostic factors for epilepsy.

Methods: In a retrospective analysis at Ewha Womans University Mokdong Hospital, 206 patients with alcohol-related seizures were examined and 15 were excluded due to preexisting epilepsy. Demographic and clinical data, including alcohol withdrawal duration, seizure recurrence, types, and comorbidities, were investigated. Logistic regression models were used to analyze the risk factors for seizure recurrence and epilepsy development. The performance of the final models was evaluated based on the area under the receiver operating characteristic curve (AUC) and validated using calibration plots and leave-one-out cross-validation.

Results: Of the 191 patients (146 males; mean age 48.3 ± 12.1 years) with alcohol-related seizures, 99 patients (51.8%) experienced seizure recurrence and 79 patients (41.4%) developed epilepsy. Factors associated with seizure recurrence included alcohol consumption levels, occurrence of focal impaired awareness seizure, anxiety, and headache. The number of recurrent seizures, semiology, status epilepticus, electroencephalogram findings, and brain imaging findings was associated with epilepsy development. The predictive models showed strong diagnostic performance, with AUCs of 0.833 for seizure recurrence and 0.939 for epilepsy development.

Conclusion: High alcohol consumption and specific clinical and diagnostic features are significant predictors of seizure recurrence and the development of epilepsy among patients with alcohol-related seizures. These findings underscore the importance of early identification and intervention to prevent seizure recurrence and

Min Young Chun and Hyungmi An contributed equally as co-first authors.

This is an open access article under the terms of the [Creative Commons Attribution-NonCommercial](https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2024 The Author(s). *Alcohol, Clinical and Experimental Research* published by Wiley Periodicals LLC on behalf of Research Society on Alcohol.

Funding information

National Research Foundation of Korea, Grant/Award Number: 2019M3C1B8090803, 2020R1A2C2013216, 2021R1I1A1A01047392, NRF-2021R1A6A3A13043922 and RS-2023-00265524; Ministry of Science and ICT (MSIT), Grant/Award Number: RS-2022-00155966

the onset of epilepsy, emphasizing the importance of AED treatment in managing these conditions.

KEY WORDS

alcohol-related seizures, electroencephalogram, epilepsy, epileptogenesis, seizure recurrence

INTRODUCTION

Alcohol withdrawal is known to cause acute symptomatic seizures (Hughes, 2009; Rogawski, 2005). The incidence of seizures in individuals with alcohol use disorder is three times higher than that in the general population (Hillbom et al., 2003). Prolonged alcohol consumption can inhibit nerve excitability by modifying the functional activity of gamma-aminobutyric acid (GABA) receptors (Rogawski, 2005; Wei et al., 2004). Sudden alcohol withdrawal results in drastic changes in cellular events at neurotransmitter receptors that lower the seizure threshold, thus leading to seizure events (Davis & Wu, 2001). Most alcohol withdrawal seizures occur within 48 h of withdrawal (Hughes, 2009; Rathlev et al., 2006). The International League Against Epilepsy (ILAE) proposed a revised definition of epilepsy in 2014 that classifies alcohol-withdrawal seizures as acute symptomatic seizures and not epilepsy (Fisher et al., 2014; Scheffer et al., 2016).

However, according to the literature, chronic alcohol consumption might be related to epileptogenesis (Samokhvalov et al., 2010). Four theories have been proposed to support this hypothesis. First, long-term heavy alcohol users with alcohol-related seizures might have cerebral atrophy due to chronic alcohol intake (Kril & Halliday, 1999; Sullivan et al., 1996). Second, certain structural changes, including traumatic cerebral hemorrhage, might be more prevalent in heavy alcohol users (Rathlev et al., 2006). Third, the "kindling" theory demonstrates that repeated withdrawal gradually lowers the epileptogenic threshold (Ballenger & Post, 1978; Bartolomei, 2006; Becker, 1998). Fourth, seizures in heavy alcohol users can be explained by specific changes in neurotransmitter systems, including GABA, that cause hyperexcitability (Avoli, 1997; Bonithus et al., 2001; Olsen & Spigelman, 2012).

There is still controversy about whether alcohol withdrawal causes evoked seizures that do not require anti-epileptic drug (AED) or can induce epileptogenesis requiring an AED prescription (Hatemer et al., 2008). Several studies have reported alcohol-related seizure patients with focal seizure semiology or cortical lesions on brain imaging (Rathlev et al., 2006). Although such patients have a high probability of seizure recurrence and progression to epilepsy, treatment guidelines remain unclear.

In this study, we investigated the clinical characteristics, seizure recurrence, and epilepsy development of patients with

alcohol-related seizures. In addition, we identified prognostic factors and developed a predictive model of epilepsy in these patients.

METHODS

Participants

We performed a retrospective review of the hospital records of patients who visited Ewha Womans University Mokdong Hospital for alcohol-related seizures from 2010 to 2022. Patients who were followed up at the hospital, through the outpatient clinic or emergency room, for more than 1 year after their first seizure episode were included; we excluded participants who had a history of pre-existing epilepsy. Additionally, we excluded patients previously diagnosed with stroke, head trauma, brain tumor, encephalitis, schizophrenia, or intellectual disability. Loss of consciousness events such as non-seizure episodes, syncope, and metabolic encephalopathy were not considered. Patients who quit drinking for more than a month prior to their first seizure were also excluded. Overall, we enrolled 191 patients who had a history of chronic alcohol consumption and acute seizures. Epilepsy was diagnosed based on the criteria of the ILAE (Fisher et al., 2017).

We investigated the following variables of patients with alcohol-related seizures in our study: the duration of alcohol withdrawal, the number of seizure recurrences, and the classification of seizure types as focal impaired awareness seizure (FIAS) or myoclonus. The patients were classified according to their semiology (a generalized group and a group with focal features such as lateralized head version, lateralized eyeball deviation, and partial seizure). Seizures occurring within 24 h of the initial event were not considered as recurrences; only those with an inter-ictal period were classified as recurrences (Fisher et al., 2017). We examined whether the patients were diagnosed with epilepsy and prescribed AEDs and whether the patients presented with status epilepticus. Additionally, we collected information about the participants' underlying diseases, including a history of epilepsy, hypertension, diabetes mellitus, liver disease, and anxiety disorders, and we examined accompanying symptoms or signs such as headache, nausea, vomiting, and delirium tremens (DT).

This study was approved by the Ewha Womans University Hospital's Institutional Review Board. This was a retrospective and

observational study; therefore, the requirement for informed consent was waived.

Alcohol consumption

Alcohol intake was quantified according to the standard criteria proposed by the National Institute on Alcohol Abuse and Alcoholism, which defines binge drinking as alcohol consumption that exceeds four standard drinks per day for males and three drinks per day for females (Gunzerath et al., 2004). In the case of beer, the level of consumption was determined based on those criteria. The quantity of traditional Korean alcohol was converted to standard drinks based on the alcoholic strength of traditional Korean drinks such as Korean rice beer (Makgeolli) and Korean liquor (Soju) (Lee et al., 2019).

Electroencephalogram findings and brain imaging findings

The participants underwent routine electroencephalogram (EEG) monitoring with 64 channels or continuous EEG monitoring with 19 channels following seizure events. We divided the participants into four groups based on their EEG findings: the normal EEG group; the group exhibiting background slow activity, excessive beta activity, or nonspecific findings; the group displaying continuous slow and background slow activity; and the group showing sharp waves.

Brain imaging was performed by either simple computed tomography or magnetic resonance imaging (MRI). In the case of MRI, diffusion-weighted, T1- and T2-weighted, fluid-attenuated inversion recovery, and gradient-echo images were obtained. Brain imaging findings were subdivided into four groups: the group with normal imaging findings, the group displaying diffuse cortical atrophy, the group showing subcortical lesions, and the group presenting with hippocampal atrophy.

Statistical analysis

The patients were divided into recurrence/non-recurrence groups and epilepsy/non-epilepsy groups. Demographic and clinical characteristics were compared between the groups using Student's t-test, the Kruskal-Wallis test for continuous variables, and the chi-square test for categorical variables. Logistic regression analyses were performed to examine the relationship between the occurrence of events (seizure recurrence and epilepsy development) and various risk factors. In multivariate analysis, the initial variable selection was performed based on univariate analysis with a p -value < 0.1 to identify potential risk factors. These factors were then used to fit the full model (multivariate model 1), from which backward elimination was applied to retain only significant variables for the final model (multivariate model 2). Feature selection was conducted independently within each leave-one-out cross-validation (LOOCV) fold to

mitigate overfitting and ensure robustness. Evaluation of the final model was performed using receiver operating characteristic (ROC) curves, area under the ROC curve (AUC), sensitivity and specificity. Model calibration, which assesses the agreement between observed outcomes and predictions, was evaluated using calibration plots. Internal validation was performed using LOOCV to assess model stability and generalizability. All analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA), and the statistical significance level was set at 0.05.

RESULTS

Of the initial cohort of 269 patients with alcohol-related seizures, 78 individuals were excluded for meeting the exclusion criteria. Thus, 191 patients (146 males and 45 females) were included in the final analysis. The average age of all participants was 48.3 ± 12.1 years. The mean standard alcohol consumption per day was 9.4 ± 5.7 drinks. Among the participants, 99 (51.8%) experienced recurrent alcohol-related seizures, and 79 participants (41.4%) were diagnosed with epilepsy and prescribed AEDs.

A comparison of the clinical characteristics of participants with and without seizure recurrence, as well as those with and without epilepsy development, is presented in Table 1. As alcohol consumption increased, the proportion of seizure recurrence increased progressively ($p=0.008$), but the proportion of epilepsy development did not show a specific trend (Figure 1). The presence of FIAS was associated with a higher recurrence rate ($p<0.001$) and a greater likelihood of epilepsy diagnosis ($p<0.001$). Additionally, the presence of focal features in semiology and MRI findings were associated with the development of epilepsy (semiology: $p<0.001$; MRI findings: $p<0.001$). EEG findings showed a significant correlation with seizure recurrence and epilepsy development (seizure recurrence, $p=0.024$; epilepsy development, $p<0.001$). Among comorbid conditions, the presence of anxiety disorders was associated with seizure recurrence ($p=0.001$), and the presence of liver disease was linked to an epilepsy diagnosis ($p=0.012$). Headache as an accompanying symptom was associated with both seizure recurrence and the development of epilepsy (seizure recurrence, $p<0.001$; epilepsy development, $p=0.002$). Nausea and vomiting were also associated with both seizure recurrence and the development of epilepsy (seizure recurrence, $p=0.042$; epilepsy development, $p=0.002$), and the presence of DT was associated with seizure recurrence ($p=0.003$).

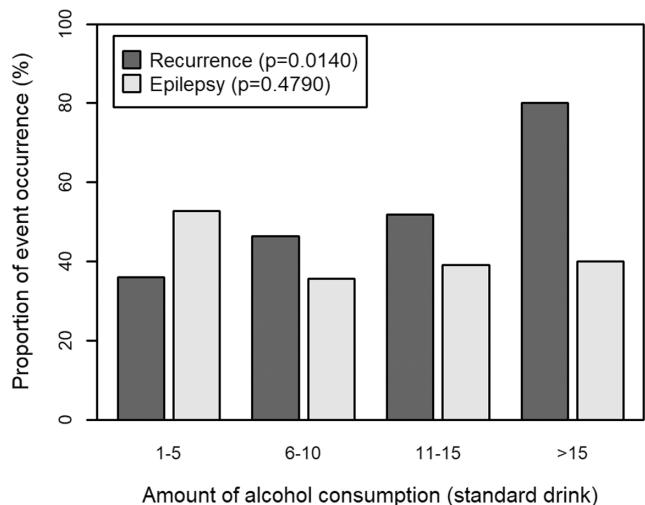
Table 2 shows the results of logistic regression analysis on risk factors for seizure recurrence. In univariate analyses, high alcohol consumption (>15 standard drinks/day, odds ratio (OR) 7.077, 95% confidence interval (CI) 2.275–25.519), the presence of focal seizure semiology (OR 6.655, 95% CI 2.431–23.461), diagnosis of epilepsy due to prescribed AEDs (OR 2.924, 95% CI 1.615–5.395), abnormal EEG and MRI findings (EEG: sharp wave, OR 2.847, 95% CI 1.364–6.109; MRI: subcortical lesions, OR 1.909, 95% CI 0.958–3.853; hippocampal atrophy, OR 2.436, 95% CI 0.953–6.547), comorbid anxiety disorder (OR 2.948, 95% CI 1.640–5.389), and the

TABLE 1 Clinical characteristics in patients with alcohol-related seizures.

	Total (N=191)		No recurrence (N=92)		Recurrence (N=99)		p-value	No epilepsy (N=112)		Epilepsy (N=79)		p-value
	N	%	N	%	N	%		N	%	N	%	
Age												
20-29	14	7.3	5	5.4	9	9.1	0.442	10	8.9	4	5.1	0.073
30-39	30	15.7	14	15.2	16	16.2		20	17.9	10	12.7	
40-49	64	33.5	35	38.0	29	29.3		41	36.6	23	29.1	
50-59	53	27.7	27	29.3	26	26.3		30	26.8	23	29.1	
>=60	30	15.7	11	12.0	19	19.2		11	9.8	19	24.1	
Sex												
Female	45	23.6	22	23.9	23	23.2	0.912	27	24.1	18	22.8	0.832
Male	146	76.4	70	76.1	76	76.8		85	75.9	61	77.2	
Alcohol consumption amount group												
1-5	36	18.8	23	25.0	13	13.1	0.008	17	15.2	19	24.1	0.473
6-10	28	14.7	15	16.3	13	13.1		18	16.1	10	12.7	
11-15	102	53.4	49	53.3	53	53.5		62	55.4	40	50.6	
>15	25	13.1	5	5.4	20	20.2		15	13.4	10	12.7	
Alcohol withdrawal duration (h)												
0-24	75	39.3	38	41.3	37	37.4	0.339	41	36.6	34	43.0	0.474
24-48	46	24.1	25	27.2	21	21.2		26	23.2	20	25.3	
>=48	70	36.6	29	31.5	41	41.4		45	40.2	25	31.6	
Recurrence group												
0	92	48.2	92	100.0		0.0		66	58.9	26	32.9	<0.001
1-3	67	35.1		0.0	67	67.7		38	33.9	29	36.7	
>=4	32	16.8		0.0	32	32.3		8	7.1	24	30.4	
FIAS												
No	164	85.9	88	95.7	76	76.8	<0.001	108	96.4	56	70.9	<0.001
Yes	27	14.1	4	4.3	23	23.2		4	3.6	23	29.1	
Myoclonus												
No	179	93.7	87	94.6	92	92.9	0.642	107	95.5	72	91.1	0.239
Yes	12	6.3	5	5.4	7	7.1		5	4.5	7	8.9	
Semiology												
Generalized	144	75.4	71	77.2	73	73.7	0.582	100	89.3	44	55.7	<0.001
Focal features ^a	47	24.6	21	22.8	26	26.3		12	10.7	35	44.3	
AED prescription												
No	112	58.6	66	71.7	46	46.5	<0.001	112	100.0		0.0	
Yes	79	41.4	26	28.3	53	53.5			0.0	79	100.0	
Status epilepticus												
No	167	87.4	83	90.2	84	84.8	0.263	110	98.2	57	72.2	<0.001
Yes	24	12.6	9	9.8	15	15.2		2	1.8	22	27.8	
EEG group												
Normal	74	38.7	44	47.8	30	30.3	0.024	63	56.3	11	13.9	
BS, excessive beta, nonspecific	43	22.5	17	18.5	26	26.3		28	25.0	15	19.0	
CS and BS	11	5.8	4	4.3	7	7.1		4	3.6	7	8.9	

TABLE 1 (Continued)

	Total (N=191)		No recurrence (N=92)		Recurrence (N=99)		p-value	No epilepsy (N=112)		Epilepsy (N=79)		p-value
	N	%	N	%	N	%		N	%	N	%	
SW	50	26.2	17	18.5	33	33.3		5	4.5	45	57.0	
Not available	13	6.8	10	10.9	3	3.0		12	10.7	1	1.3	
MRI group							0.164					<0.001
Normal	64	33.5	37	40.2	27	27.3		45	40.2	19	24.1	
Diffuse cortical atrophy	35	18.3	18	19.6	17	17.2		20	17.9	15	19.0	
Subcortical lesions	67	35.1	28	30.4	39	39.4		45	40.2	22	27.8	
Hippocampal atrophy	25	13.1	9	9.8	16	16.2		2	1.8	23	29.1	
Hypertension							0.769					0.287
No	143	74.9	68	73.9	75	75.8		87	77.7	56	70.9	
Yes	48	25.1	24	26.1	24	24.2		25	22.3	23	29.1	
Diabetes mellitus							0.052					0.681
No	167	87.4	76	82.6	91	91.9		97	86.6	70	88.6	
Yes	24	12.6	16	17.4	8	8.1		15	13.4	9	11.4	
Liver disease							0.518					0.012
No	54	28.3	24	26.1	30	30.3		24	21.4	30	38.0	
Yes	137	71.7	68	73.9	69	69.7		88	78.6	49	62.0	
Anxiety disorder							<0.001					0.292
No	105	55.0	63	68.5	42	42.4		58	51.8	47	59.5	
Yes	86	45.0	29	31.5	57	57.6		54	48.2	32	40.5	
Headache							<0.001					0.002
No	157	82.2	81	88.0	76	76.8		100	89.3	57	72.2	
Yes	34	17.8	11	12.0	23	23.2		12	10.7	22	27.8	
Nausea and vomiting							0.042					0.002
No	119	62.3	71	77.2	48	48.5		73	65.2	46	58.2	
Yes	72	37.7	21	22.8	51	51.5		39	34.8	33	41.8	
Delirium tremens							0.003					0.574
No	141	73.8	77	83.7	64	64.6		81	72.3	60	75.9	
Yes	50	26.2	15	16.3	35	35.4		31	27.7	19	24.1	


Abbreviations: N, number; AED, anti-epileptic drug; EEG, electroencephalogram; FIAS, focal impaired awareness seizure; MRI, magnetic resonance imaging; Ref., reference.

^aFocal features: lateralizing signs such as head version and eyeball deviation.

presence of headache or DT as an accompanying symptom or sign (headache, OR 8.334, 95% CI 3.928–19.477; DTs, OR 2.807, 95% CI 1.431–5.726) were significantly associated with seizure recurrence. In constructing multivariate models by combining significant variables, we developed multivariate model 2 by incorporating only the significant variables in multivariate analysis. Multivariate model 2 contains the following predictors: (1) high alcohol consumption (>15 standard drinks/day; OR 6.580, 95% CI 1.571–27.563), (2) the presence of FIAS (OR 3.832, 95% CI 1.059–13.869), (3) diagnosis of epilepsy with AED prescription (OR 2.479, 95% CI 1.176–5.226), (4) comorbid anxiety disorders (OR 2.831, 95% CI 1.387–5.779), and (5) the presence of headache (OR 6.481, 95% CI 2.696–15.578) (Figure 2).

The predictive performance of the final multivariate model 2 was decent, with an AUC value of 0.820 (95% CI 0.778–0.888); the cross-validated AUC was 0.769 (95% CI 0.721–0.847) (Figure 3A).

Univariate and multivariate analyses to assess the association between risk factors and epilepsy development are shown in Table 3. Univariate analyses showed that older age (≥60 years, OR 4.317, 95% CI 1.150–18.959), alcohol withdrawal duration (24–48 h, OR 0.282, 95% CI 0.099–0.694), seizure recurrence rates (1–3 times, OR 1.937, 95% CI 1.001–3.782; ≥4 times, OR 7.615, 95% CI 3.147–20.156, compared with no recurrence), the presence of FIAS (OR 11.087, 95% CI 4.030–39.219), focal features in semiology (OR 6.629, 95% CI 3.224–14.454), presenting with status epilepticus (OR 21.227, 95% CI 5.969–135.416), abnormal EEG and MRI findings (EEG:

FIGURE 1 The proportion of alcohol-related seizure recurrence and epilepsy development according to the amount of alcohol consumed.

background slow (BS), excessive beta, nonspecific, OR 3.068, 95% CI 1.262–7.685; continuous slow and BS, OR 10.023, 95% CI 2.603–44.067; sharp wave, OR 51.545, 95% CI 18.147–176.869; MRI: hippocampal atrophy, OR 27.236, 95% CI 7.116–180.655), a history of liver disease (OR 0.445, 95% CI 0.233–0.842), and presence of concomitant symptoms or signs such as headache (OR 2.776, 95% CI 1.472–5.319), nausea and vomiting (OR 3.216, 95% CI 1.505–7.172) were significantly associated with the development of epilepsy. In the multivariate logistic regression model, (1) the seizure recurrence rate (≥ 4 times, OR 7.811, 95% CI 1.970–33.932), (2) focal features in semiology (OR 6.092, 95% CI 1.942–20.661), (3) presenting with status epilepticus (OR 13.155, 95% CI 2.399–119.221), (4) abnormal EEG findings (sharp wave, OR 26.960, 95% CI 8.422–102.348), and (5) abnormal MRI findings (hippocampal atrophy, OR 12.316, 95% CI 2.011–113.420) were significant, so these predictors were used to construct multivariate model 2 (Figure 2).

The final multivariate model 2 exhibited strong predictive performance, with an AUC value of 0.939 (95% CI 0.906–0.972), and the cross-validated AUC was at 0.910 (95% CI 0.865–0.952) (Figure 3B).

The calibration plot shown in Figure S1 revealed that the risk calibration curves were close to the diagonal, indicating that both models fit the data well.

DISCUSSION

In this study, we evaluated patients with at least one seizure who had a history of chronic alcohol consumption. We identified several risk factors associated with seizure recurrence: high alcohol consumption, presenting with FIAS, a diagnosis of epilepsy with AED prescription, history of epilepsy, the presence of comorbid anxiety disorder, and the experience of headache. Additionally, we found risk factors for the development of epilepsy: a high seizure recurrence rate, focal features in semiology, presenting with status

epilepticus, and abnormal findings in EEG and MRI. The predictive models, which incorporate those predictors into multivariate logistic regression models for seizure recurrence and the development of epilepsy, demonstrated strong diagnostic performance.

The first major finding of our study is that high alcohol consumption, the presence of FIAS, a history of epilepsy, comorbid anxiety disorder, and concurrent symptoms of headache are risk factors for alcohol-related seizure recurrence. It is noteworthy that, despite the higher mortality rate of patients with alcohol-related seizures compared with the general population (Sansone et al., 2023), studies on these risk factors have been limited. Our findings are consistent with the previous study showing that age, sex, and time since the last drink were not significant predictors for seizure recurrence (D'Onofrio et al., 1999). However, the previous study did not address risk factors or build predictive models for seizure recurrence, including EEG and brain imaging. Animal studies have also shown that chronic alcohol consumption and repeated withdrawal can lead to spontaneous seizures, a persistent decrease in seizure threshold resembling "kindling" phenomenon (Kokka et al., 1993). Our study can assist in predicting seizure recurrence in patients with alcohol-related seizures and in developing strategies for recurrence prevention in clinical practice.

In our model for the development of epilepsy, the number of seizure events and semiology with focal features were risk factors, which is in agreement with the literature (Kim et al., 2016). According to the Status Epilepticus Severity Score, the significant predictors are age, history of seizures, seizure type, and extent of consciousness impairment (Rossetti et al., 2008). It has been proposed specific predictors for seizure recurrence and epilepsy in patients having their first seizure after ischemic stroke, such as male sex and partial seizure (Kim et al., 2016). In this study, an epileptiform discharge (sharp waves) on an EEG was an important predictor of epilepsy in patients with alcohol-related seizures. The univariate logistic regression model showed that epileptiform discharges had the highest OR of 55.659, suggesting that an epileptiform discharge might be the most effective predictor. Alcohol withdrawal seizures are generally known to be associated with a normal EEG (Sand et al., 2002). However, epileptiform discharges on an EEG can imply the presence of alcohol-independent epileptic factors or epileptogenesis caused by chronic alcohol consumption (Ballenger & Post, 1978; Bartolomei, 2006; Becker, 1998; Sullivan et al., 1996). Therefore, if a patient with alcohol use disorder experiences a seizure event and visits the hospital, the possibility of epilepsy must be considered if the EEG shows epileptiform discharges.

Hippocampal atrophy on brain MRI was significantly associated with the development of epilepsy. This result is in line with those of previous studies showing that alcohol-related seizure patients had more brain lesions (Bråthen et al., 1999; Rathlev et al., 2002; Verma et al., 1992). An earlier study with rats showed that exposing a developing brain to alcohol resulted in neuronal loss from the hippocampus (Bonthius et al., 2001). Additionally, adult rats subjected to chronic alcohol exposure showed significant cell loss in all hippocampal fields and reduced neural stem cell

TABLE 2 Univariate and multivariate models for predicting seizure recurrences.

	Univariate analysis			Multivariate model 1			Multivariate model 2		
	OR	95% CI	p-value	OR	95% CI	p-value	OR	95% CI	p-value
Age									
20-29	Ref.								
30-39	0.635	0.162	2.299	0.496					
40-49	0.460	0.129	1.485	0.205					
50-59	0.535	0.147	1.763	0.314					
>=60	0.960	0.243	3.550	0.951					
Sex									
Female	Ref.								
Male	0.963	0.492	1.886	0.912					
Alcohol consumption amount group									
1-5	Ref.			Ref.			Ref.		
6-10	1.533	0.560	4.248	0.406	1.547	0.421	5.678	0.511	1.541
11-15	1.914	0.885	4.279	0.104	2.030	0.702	5.873	0.191	2.353
>15	7.077	2.275	25.519	0.001	7.060	1.639	30.411	0.009	6.580
Alcohol withdrawal duration (h)									
0-24	Ref.								
24-48	1.253	0.573	2.762	0.572					
>=48	1.974	0.947	4.247	0.074					
Recurrence group									
0									
1-3									
>=4									
FIAS									
No	Ref.			Ref.			Ref.		
Yes	6.655	2.431	23.461	0.001	3.365	0.871	12.997	0.078	3.832
Myoclonus									
No	Ref.								
Yes	1.324	0.408	4.619	0.642					
Semiology									
Generalized	Ref.								
Focal features ^a	1.204	0.623	2.350	0.582					
AED prescription									
No	Ref.			Ref.			Ref.		
Yes	2.924	1.615	5.395	0.001	3.093	1.154	8.292	0.025	2.479
Status epilepticus									
No	Ref.								
Yes	1.647	0.693	4.117	0.267					
EEG group									
Normal	Ref.			Ref.					
BS, excessive beta, nonspecific	2.243	1.049	4.900	0.039	1.144	0.427	3.062	0.789	
CS and BS	2.567	0.711	10.523	0.160	0.585	0.103	3.314	0.544	
SW	2.847	1.364	6.109	0.006	0.811	0.251	2.625	0.727	

(Continues)

TABLE 2 (Continued)

	Univariate analysis				Multivariate model 1				Multivariate model 2		
	OR	95% CI	p-value		OR	95% CI	p-value		OR	95% CI	p-value
Not available	0.440	0.093	1.579	0.241	0.300	0.052	1.728	0.178			
MRI group											
Normal	Ref.										
Diffuse cortical atrophy	1.294	0.564	2.976	0.542	0.571	0.187	1.748	0.327			
Subcortical lesions	1.909	0.958	3.853	0.068	1.464	0.620	3.457	0.385			
Hippocampal atrophy	2.436	0.953	6.547	0.068	0.564	0.137	2.318	0.427			
Hypertension											
No	Ref.										
Yes	0.907	0.470	1.748	0.769							
Diabetes mellitus											
No	Ref.										
Yes	0.418	0.162	1.003	0.058							
Liver disease											
No	Ref.										
Yes	0.812	0.429	1.526	0.518							
Anxiety disorder											
No	Ref.				Ref.				Ref.		
Yes	2.948	1.640	5.389	<0.001	2.584	1.170	5.706	0.019	2.831	1.387	5.779
Headache											
No	Ref.				Ref.				Ref.		
Yes	8.334	3.928	19.477	<0.001	6.896	2.698	17.623	<0.001	6.481	2.696	15.578
Nausea and vomiting											
No	Ref.				Ref.						
Yes	2.228	1.038	5.042	0.045	1.601	0.580	4.423	0.364			
Delirium tremens											
No	Ref.				Ref.						
Yes	2.807	1.431	5.726	0.003	1.448	0.578	3.628	0.430			

Abbreviations: OR, odds ratio; 95% CI, 95% confidence interval; AED, anti-epileptic drug; EEG, electroencephalogram; FIAS, focal impaired awareness seizure; MRI, magnetic resonance imaging; Ref., reference.

^aFocal features: lateralizing signs such as head version and eyeball deviation.

proliferation, leading to decreased neurogenesis and suggesting functional and neuropathologic alterations associated with epilepsy (Ame et al., 1988; Scorza et al., 2003). Studies in humans have also demonstrated that chronic alcohol use can be associated with hippocampal atrophy (Lee et al., 2016; Topiwala et al., 2017). How hippocampal atrophy can contribute to the development of seizures in patients with alcohol use disorder is not completely understood, but disrupted neuronal networks in patients with alcohol-related hippocampal atrophy might lead to altered neuronal connections or changes in various neurotransmitter systems such as glutamate or GABA that contribute to an imbalance in neuronal excitability (Geibprasert et al., 2010). The development of epilepsy should be considered if a patient with a history of chronic

alcohol use disorder and hippocampal atrophy on MRI manifests seizures.

In this study, semiology with focal features was significantly associated with an epilepsy diagnosis. This result is consistent with the existing literature showing that the semiological lateralizing sign could originate from the focal epileptogenic zone of the brain (Loddenkemper & Kotagal, 2005). Our findings demonstrate that more frequent seizure recurrence was also associated with a higher likelihood of receiving an epilepsy diagnosis. According to the "kindling" theory, even if alcohol withdrawal initially induces seizures, epileptic seizures can occur if those events accumulate because the epileptogenic threshold is lowered (Samokhvalov et al., 2010). Our study thus identified semiology with focal features and high

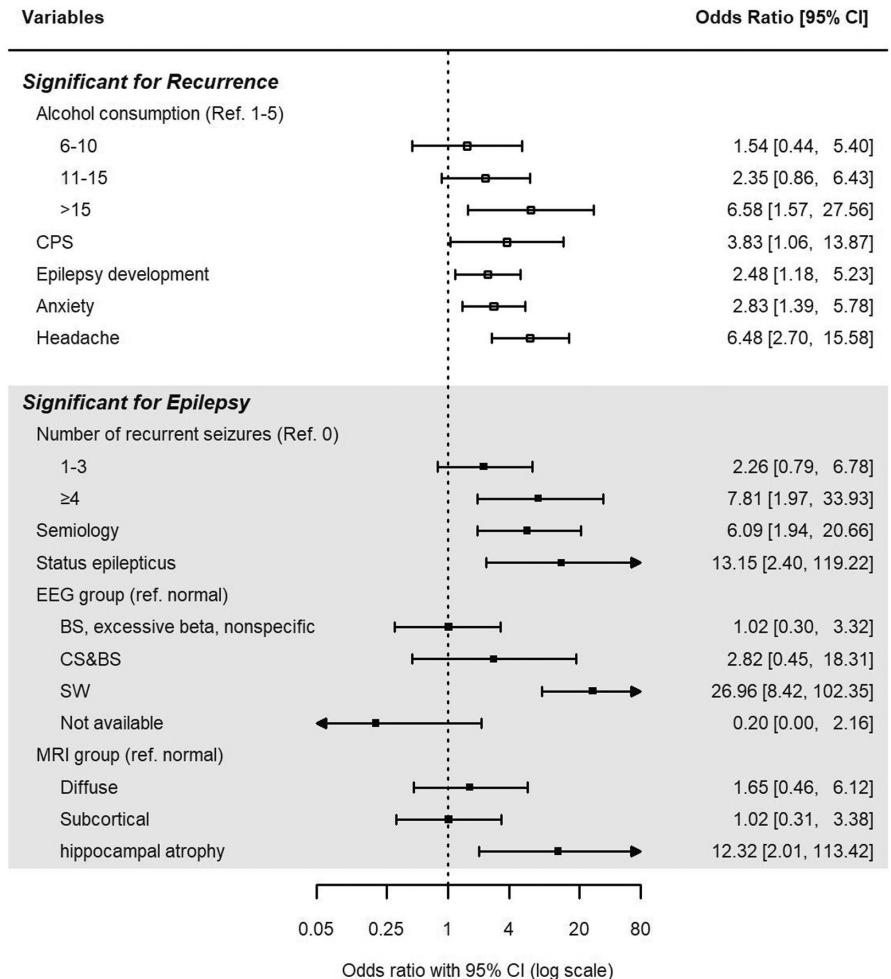


FIGURE 2 Forest plot showing odds ratios of significant risk factors predicting seizure recurrence (white region) and epilepsy development (shaded region).

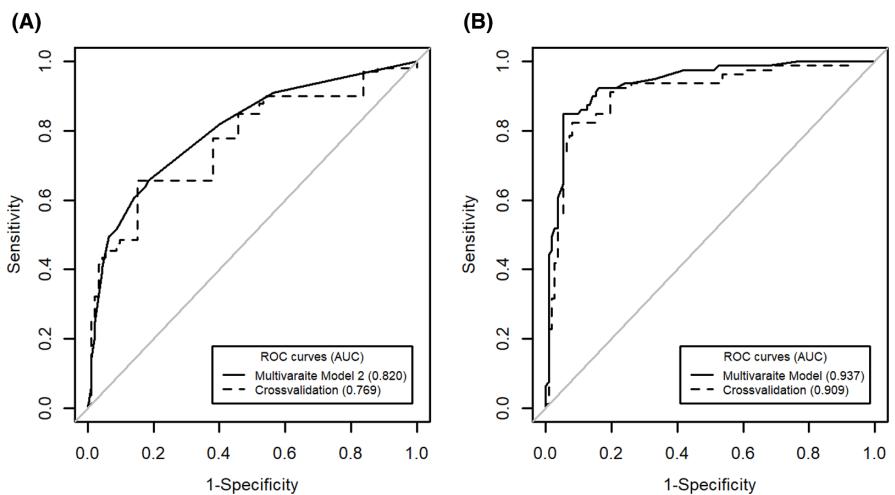


FIGURE 3 Receiver operating characteristic curves for the multivariate logistic regression model and leave-one-out cross-validated predictions for seizure recurrence (A) and epilepsy development (B).

recurrence frequency as important factors in the development of epilepsy.

The relationship between headaches, anxiety, and alcohol-related seizures might be explained by the impact of chronic alcohol use

on the brain. Alcohol consumption is known to be associated with an increased risk of headaches, including tension-type headaches and migraines (Hindiyyeh et al., 2020; Lebedeva et al., 2016; Wang et al., 2013). Comorbid headaches and epilepsy are also relatively

TABLE 3 Univariate and multivariate models to predict epilepsy development.

	Univariate analysis				Multivariate model 1				Multivariate model 2			
	OR	95% CI	p-value		OR	95% CI	p-value		OR	95% CI	p-value	
Age												
20-29	Ref.											
30-39	1.250	0.324	5.463	0.753	3.623	0.317	41.453	0.301				
40-49	1.402	0.416	5.570	0.601	6.188	0.620	61.817	0.121				
50-59	1.916	0.561	7.702	0.320	2.276	0.225	23.048	0.486				
>=60	4.317	1.150	18.959	0.037	12.002	1.035	139.198	0.047				
Sex												
Female	Ref.											
Male	0.929	0.465	1.826	0.833								
Alcohol consumption amount group												
1-5	Ref.											
6-10	0.497	0.176	1.352	0.176								
11-15	0.577	0.266	1.241	0.160								
>15	0.596	0.208	1.664	0.327								
Alcohol withdrawal duration (h)												
0-24	Ref.				Ref.							
24-48	0.282	0.099	0.694	0.010	1.012	0.262	3.908	0.987				
>=48	1.161	0.561	2.401	0.686	1.035	0.258	4.150	0.961				
Recurrence group												
0	Ref.				Ref.				Ref.			
1-3	1.937	1.001	3.782	0.051	1.839	0.519	6.513	0.345	2.256	0.787	6.779	0.134
>=4	7.615	3.147	20.156	<0.001	10.723	2.161	53.198	0.004	7.811	1.970	33.932	0.004
FIAS												
No	Ref.				Ref.							
Yes	11.087	4.030	39.219	<0.001	3.687	0.553	24.569	0.178				
Myoclonus												
No	Ref.											
Yes	2.081	0.640	7.269	0.226								
Semiology												
Generalized	Ref.				Ref.				Ref.			
Focal features ^a	6.629	3.224	14.454	<0.001	5.610	1.486	21.180	0.011	6.092	1.942	20.661	0.003
AED prescription												
No												
Yes												
Status epilepticus												
No	Ref.				Ref.				Ref.			
Yes	21.227	5.969	135.416	<0.001	19.225	2.600	142.170	0.004	13.155	2.399	119.221	0.008
EEG group												
Normal	Ref.				Ref.				Ref.			
BS, excessive beta, nonspecific	3.068	1.262	7.685	0.014	0.615	0.159	2.372	0.480	1.018	0.296	3.321	0.977
CS and BS	10.023	2.603	44.067	0.001	1.726	0.231	12.924	0.595	2.821	0.446	18.313	0.266
SW	51.545	18.147	176.869	<0.001	20.655	5.270	80.947	<0.001	26.960	8.422	102.348	<0.001
Not available	0.477	0.025	2.823	0.498	0.132	0.005	3.357	0.220	0.195	0.005	2.158	0.274

TABLE 3 (Continued)

	Univariate analysis			Multivariate model 1			Multivariate model 2		
	OR	95% CI	p-value	OR	95% CI	p-value	OR	95% CI	p-value
MRI group									
Normal	Ref.			Ref.			Ref.		
Diffuse cortical atrophy	1.776	0.751	4.210	0.189	1.387	0.353	5.444	0.639	1.653
Subcortical lesions	1.158	0.553	2.442	0.698	0.897	0.231	3.474	0.875	1.020
Hippocampal atrophy	27.236	7.116	180.655	<0.001	10.628	1.448	78.032	0.020	12.316
History of epilepsy									
No	Ref.								
Yes	1.429	0.738	2.766	0.288					
Hypertension									
No	Ref.								
Yes	0.831	0.332	1.978	0.682					
Diabetes mellitus									
No	Ref.				Ref.				
Yes	0.445	0.233	0.842	0.013	0.735	0.208	2.595	0.633	
Liver disease									
No	Ref.								
Yes	0.731	0.407	1.306	0.292					
Anxiety disorder									
No	Ref.				Ref.				
Yes	2.776	1.472	5.319	0.002	0.889	0.253	3.127	0.854	
Headache									
No	Ref.				Ref.				
Yes	3.216	1.505	7.172	0.003	3.147	0.838	11.821	0.090	
Nausea and vomiting									
No	Ref.								
Yes	0.827	0.422	1.593	0.575					
Delirium tremens									
No	1.250	0.324	5.463	0.753	3.623	0.317	41.453	0.301	
Yes	1.402	0.416	5.570	0.601	6.188	0.620	61.817	0.121	
	1.916	0.561	7.702	0.320	2.276	0.225	23.048	0.486	

Abbreviations: OR, odds ratio; 95% CI, 95% confidence interval; AED, anti-epileptic drug; EEG, electroencephalogram; FIAS, focal impaired awareness seizure; MRI, magnetic resonance imaging; Ref., reference.

^aFocal features: lateralizing signs such as head version and eyeball deviation.

common, as both migraine and epilepsy share multiple common triggers such as sleep deprivation, female hormone fluctuations, visual stimulation, and alcohol (Kingston & Schwedt, 2017). Additionally, anxiety is significantly more prevalent in patients with alcohol use disorder (AUD), particularly during alcohol withdrawal syndrome. Repeated alcohol withdrawal increases anxiety in rats through mechanisms involving GABA_A, corticotropin-releasing factor (CRF)1, and 5-HT3 receptors, implicating the limbic system, especially the amygdala (Faingold et al., 2004). Since seizures adversely affect patients' physical and emotional well-being, many patients experience depression or anxiety immediately following a seizure (Gutmane

et al., 2019). Therefore, the co-occurrence of headaches and anxiety in patients with alcohol-related seizures can be attributed to both the direct effects of alcohol on brain physiology and shared risk factors for these conditions. Understanding this temporal relationship could support the "kindling" hypothesis and the concept of worsening emotional distress (hyperkatifeia) with repeated cycles of addiction, as proposed by George Koob (Koob & Schulkin, 2019). Further studies considering these aspects may elucidate the complex interplay between anxiety, AUD, and seizure risk.

The high sensitivity of these models offers valuable potential for the early prediction of seizure recurrence and the development

of epilepsy, allowing for timely prescriptions of AEDs when patients with alcohol use disorder present with seizures at the hospital. There has been a lack of proposed models for predicting seizure recurrence or the progression to epilepsy in these patients (Manthey et al., 2019), despite the increasing prevalence of alcohol-related seizures in clinical practice (Hughes, 2009). Our models could contribute to the diagnosis and proper treatment of these patients in clinical settings.

Although we could not perform a prospective analysis in this study, we observed that the diagnoses of 20 patients (9.7%) changed during follow-up. They were initially diagnosed with alcohol withdrawal seizures and discharged without an AED prescription because they had no abnormalities on their EEG or brain imaging and no focal features. However, they continued to visit the hospital with recurrent seizures regardless of the alcohol withdrawal duration. They also started to show abnormal findings on the follow-up EEG and brain imaging, and AEDs were finally prescribed with an epilepsy diagnosis. If a cohort analysis can be performed, the characteristics of these patients might be further defined. Nevertheless, an advantage of this study is that a large number of participants ($n=191$) underwent brain CT or MRI, and 181 participants (94.8%) underwent EEG monitoring.

This study has several limitations. First, although we examined daily alcohol consumption, we could not assess the overall alcohol consumption during the patient's lifetime or the total amount of alcohol consumed. Second, serum ethanol levels were not documented. Additionally, the degree of diffuse cortical atrophy was not quantified. Future studies could explore the relationship between the severity of atrophy and the development of epilepsy in patients with alcohol-related seizures. Third, although we excluded participants with a documented history of significant head injury to focus on patients with alcohol use disorder without obvious structural brain abnormalities, undiagnosed or subclinical head trauma may have occurred in our participants, potentially influencing our results. Fourth, generalizations from this study should be made with caution because it was conducted in a single hospital. Finally, this study was retrospective, which lacks prospective control. Future prospective studies are needed to validate our findings and improve the robustness of the predictive models.

CONCLUSION

Alcohol-related seizure patients exhibiting focal features, a history of recurrent seizure, epileptiform discharges, and brain cortical lesions are at high risk of being diagnosed with epilepsy. This study has demonstrated that alcohol can not only induce provoked recurrent seizures but also predispose to epilepsy, which needs to be treated with AEDs. Alcohol consumption and recurrent seizures can lead to epileptogenesis in the brains of patients with alcohol-related seizures.

FUNDING INFORMATION

This study was supported by grants from the Institute of Information & Communications Technology Planning & Evaluation (IITP) funded

by the Korean government (MSIT) (No. RS-2022-0015596), Artificial Intelligence Convergence Innovation Human Resources Development (Ewha Womans University), the Basic Science Research Program, Convergent Technology R&D Program for Human Augmentation, and BK21 Plus Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, Information and Communication Technologies, & Future Planning [NRF-2021R1A6A3A13043922, 2021R1I1A1A01047392, 2020R1A2C2013216, 2019M3C1B8090803, and RS-2023-00265524] to HW Lee.

CONFLICT OF INTEREST STATEMENT

All authors report no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

ORCID

Min Young Chun <https://orcid.org/0000-0003-3731-6132>
 Hyungmi An <https://orcid.org/0000-0002-4148-8423>
 Hye Ah Lee <https://orcid.org/0000-0002-4051-0350>
 Sungeun Hwang <https://orcid.org/0000-0003-0813-1315>
 Seungwon Chung <https://orcid.org/0009-0008-9263-3310>
 Na-Young Kim <https://orcid.org/0009-0007-8622-269X>
 Hyang Woon Lee <https://orcid.org/0000-0002-0610-085X>

REFERENCES

Ame, M., Uylings, H.B. & Paula-Barbosa, M. (1988) Granule cell loss and dendritic regrowth in the hippocampal dentate gyrus of the rat after chronic alcohol consumption. *Brain Research*, 473(1), 1-14.
 Avoli, M. (1997) GABA and epileptogenesis. *Epilepsia: Journal of the International League Against Epilepsy*, 38(4), 399-407.
 Ballenger, J.C. & Post, R.M. (1978) Kindling as a model for alcohol withdrawal syndromes. *The British Journal of Psychiatry*, 133(1), 1-14.
 Bartolomei, F. (2006) Epilepsy and alcohol. *Epileptic Disorders*, 8(1), 72-78.
 Becker, H.C. (1998) Kindling in alcohol withdrawal. *Alcohol Health and Research World*, 22(1), 25.
 Bonthius, D.J., Woodhouse, J., Bonthius, N.E., Taggard, D.A. & Lothman, E.W. (2001) Reduced seizure threshold and hippocampal cell loss in rats exposed to alcohol during the brain growth spurt. *Alcoholism: Clinical and Experimental Research*, 25(1), 70-82.
 Bråthen, G., Brodtkorb, E., Helde, G., Sand, T. & Bovim, G. (1999) The diversity of seizures related to alcohol use. A study of consecutive patients. *European Journal of Neurology*, 6(6), 697-703.
 Davis, K.M. & Wu, J.-Y. (2001) Role of glutamatergic and GABAergic systems in alcoholism. *Journal of Biomedical Science*, 8(1), 7-19.
 D'Onofrio, G., Rathlev, N.K., Ulrich, A.S., Fish, S.S. & Freedland, E.S. (1999) Lorazepam for the prevention of recurrent seizures related to alcohol. *New England Journal of Medicine*, 340(12), 915-919.
 Faingold, C.L., Knapp, D.J., Chester, J.A. & Gonzalez, L.P. (2004) Integrative neurobiology of the alcohol withdrawal syndrome—from anxiety to seizures. *Alcoholism: Clinical and Experimental Research*, 28(2), 268-278.

Fisher, R.S., Acevedo, C., Arzimanoglou, A., Bogacz, A., Cross, J.H., Elger, C.E. et al. (2014) ILAE official report: a practical clinical definition of epilepsy. *Epilepsia*, 55(4), 475–482.

Fisher, R.S., Cross, J.H., French, J.A., Higurashi, N., Hirsch, E., Jansen, F.E. et al. (2017) Operational classification of seizure types by the international league against epilepsy: position paper of the ILAE Commission for Classification and Terminology. *Epilepsia*, 58(4), 522–530.

Geibprasert, S., Gallucci, M. & Krings, T. (2010) Alcohol-induced changes in the brain as assessed by MRI and CT. *European Radiology*, 20, 1492–1501.

Gunzerath, L., Faden, V., Zakhari, S. & Warren, K. (2004) National Institute on Alcohol Abuse and Alcoholism report on moderate drinking. *Alcoholism: Clinical and Experimental Research*, 28(6), 829–847.

Gutmane, E., Suna, N., Tomilova, A., Liepina, L., Folkmanis, V. & Karelis, G. (2019) Alcohol-related seizures may be associated with more severe depression, alcohol dependence syndrome, and more pronounced alcohol-related problems. *Epilepsy & Behavior*, 91, 81–85.

Hattemer, K., Knake, S., Oertel, W.H., Hamer, H.M. & Rosenow, F. (2008) Recurrent alcohol-induced seizures in a patient with chronic alcohol abuse. *Epileptic Disorders*, 10(2), 162–164.

Hillbom, M., Pienkeriainen, I. & Leone, M. (2003) Seizures in alcohol-dependent patients. *CNS Drugs*, 17(14), 1013–1030.

Hindiyyah, N.A., Zhang, N., Farrar, M., Banerjee, P., Lombard, L. & Aurora, S.K. (2020) The role of diet and nutrition in migraine triggers and treatment: a systematic literature review. *Headache: The Journal of Head and Face Pain*, 60(7), 1300–1316.

Hughes, J.R. (2009) Alcohol withdrawal seizures. *Epilepsy & Behavior*, 15(2), 92–97.

Kim, H.J., Park, K.D., Choi, K.-G. & Lee, H.W. (2016) Clinical predictors of seizure recurrence after the first post-ischemic stroke seizure. *BMC Neurology*, 16(1), 1–10.

Kingston, W.S. & Schwedt, T.J. (2017) The relationship between headaches with epileptic and non-epileptic seizures: a narrative review. *Current Pain and Headache Reports*, 21, 1–6.

Kokka, N., Sapp, D.W., Taylor, A.M. & Olsen, R.W. (1993) The kindling model of alcohol dependence: similar persistent reduction in seizure threshold to pentylenetetrazol in animals receiving chronic ethanol or chronic pentylenetetrazol. *Alcoholism: Clinical and Experimental Research*, 17(3), 525–531.

Koob, G.F. & Schulkin, J. (2019) Addiction and stress: an allostatic view. *Neuroscience & Biobehavioral Reviews*, 106, 245–262.

Kril, J.J. & Halliday, G.M. (1999) Brain shrinkage in alcoholics: a decade on and what have we learned? *Progress in Neurobiology*, 58(4), 381–387.

Lebedeva, E.R., Kobzeva, N.R., Gilev, D.V. & Olesen, J. (2016) Factors associated with primary headache according to diagnosis, sex, and social group. *Headache: The Journal of Head and Face Pain*, 56(2), 341–356.

Lee, J., Im, S.-J., Lee, S.-G., Stadlin, A., Son, J.-W., Shin, C.-J. et al. (2016) Volume of hippocampal subfields in patients with alcohol dependence. *Psychiatry Research: Neuroimaging*, 258, 16–22.

Lee, S., Kim, J.S., Jung, J.G., Oh, M.K., Chung, T.H. & Kim, J. (2019) Korean alcohol guidelines for moderate drinking based on facial Flushing. *Korean Journal of Family Medicine*, 40(4), 204–211. Available from: <https://doi.org/10.4082/kjfm.19.0059>

Loddenkemper, T. & Kotagal, P. (2005) Lateralizing signs during seizures in focal epilepsy. *Epilepsy & Behavior*, 7(1), 1–17.

Manthey, J., Shield, K.D., Rylett, M., Hasan, O.S., Probst, C. & Rehm, J. (2019) Global alcohol exposure between 1990 and 2017 and forecasts until 2030: a modelling study. *The Lancet*, 393(10190), 2493–2502.

Olsen, R.W. & Spigelman, I. (2012) GABA_A receptor plasticity in alcohol withdrawal. In: *Jasper's Basic Mechanisms of the Epilepsies*, 4th edition. Kettering: Oxford University Press

Rathlev, N.K., Ulrich, A., Shieh, T.C., Callum, M.G., Bernstein, E. & D'Onofrio, G. (2002) Etiology and weekly occurrence of alcohol-related seizures. *Academic Emergency Medicine*, 9(8), 824–828.

Rathlev, N.K., Ulrich, A.S., Delanty, N. & D'Onofrio, G. (2006) Alcohol-related seizures. *The Journal of Emergency Medicine*, 31(2), 157–163. Available from: <https://doi.org/10.1016/j.jemermed.2005.09.012>

Rogawski, M.A. (2005) Update on the neurobiology of alcohol withdrawal seizures. *Epilepsy Currents*, 5(6), 225–230.

Rossetti, A.O., Logroscino, G., Milligan, T.A., Michaelides, C., Ruffieux, C. & Bromfield, E.B. (2008) Status epilepticus severity score (STESS). *Journal of Neurology*, 255(10), 1561–1566.

Samokhvalov, A.V., Irving, H., Mohapatra, S. & Rehm, J. (2010) Alcohol consumption, unprovoked seizures, and epilepsy: a systematic review and meta-analysis. *Epilepsia*, 51(7), 1177–1184. Available from: <https://doi.org/10.1111/j.1528-1167.2009.02426.x>

Sand, T., Bräthen, G., Michler, R., Brodtkorb, E., Helde, G. & Bovim, G. (2002) Clinical utility of EEG in alcohol-related seizures. *Acta Neurologica Scandinavica*, 105(1), 18–24.

Sansone, G., Megevand, P., Vulliémoz, S., Corbetta, M., Picard, F. & Seeck, M. (2023) Long-term outcome of alcohol withdrawal seizures. *European Journal of Neurology*, 31, e16075.

Scheffer, I.E., French, J., Hirsch, E., Jain, S., Mathern, G.W., Moshe, S.L. et al. (2016) Classification of the epilepsies: new concepts for discussion and debate—special report of the ILAE classification task force of the Commission for Classification and Terminology. *Epilepsia Open*, 1(1–2), 37–44. Available from: <https://doi.org/10.1002/epi4.5>

Scorza, F.A., Arida, R.M., Cysneiros, R.M., Priel, M.R., de Albuquerque, M. & Cavalheiro, E.A. (2003) The effects of alcohol intake and withdrawal on the seizures frequency and hippocampal morphology in rats with epilepsy. *Neuroscience Research*, 47(3), 323–328.

Sullivan, E.V., Marsh, L., Mathalon, D.H., Lim, K.O. & Pfefferbaum, A. (1996) Relationship between alcohol withdrawal seizures and temporal lobe white matter volume deficits. *Alcoholism: Clinical and Experimental Research*, 20(2), 348–354.

Topiwala, A., Allan, C.L., Valkanova, V., Zsoldos, E., Filippini, N., Sexton, C. et al. (2017) Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: longitudinal cohort study. *BMJ*, 357, j2353.

Verma, N.P., Policherla, H. & Buber, B.A. (1992) Prior head injury accounts for the heterogeneity of the alcohol-epilepsy relationship. *Clinical Electroencephalography*, 23(3), 147–151.

Wang, J., Huang, Q., Li, N., Tan, G., Chen, L. & Zhou, J. (2013) Triggers of migraine and tension-type headache in China: a clinic-based survey. *European Journal of Neurology*, 20(4), 689–696.

Wei, W., Faria, L.C. & Mody, I. (2004) Low ethanol concentrations selectively augment the tonic inhibition mediated by δ subunit-containing GABA_A receptors in hippocampal neurons. *Journal of Neuroscience*, 24(38), 8379–8382.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Chun, M.Y., An, H., Lee, H.A., Hwang, S., Chung, S., Kim, N.-Y. et al. (2024) Clinical characteristics of seizure recurrence and epilepsy development in patients with alcohol-related seizures. *Alcohol: Clinical and Experimental Research*, 00, 1–13. Available from: <https://doi.org/10.1111/acer.15449>