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Summary: Among the many fears associated with seizures,
patients with epilepsy are greatly frustrated and distressed
over seizure’s apparent unpredictable occurrence. However,
increasing evidence have emerged over the years to support
that seizure occurrence is not a random phenomenon as
previously presumed; it has a cyclic rhythm that oscillates over
multiple timescales. The pattern in rises and falls of seizure rate
that varies over 24 hours, weeks, months, and years has
become a target for the development of innovative devices
that intend to detect, predict, and forecast seizures. This article
will review the different tools and devices available or that

have been previously studied for seizure detection, prediction,
and forecasting, as well as the associated challenges and
limitations with the utilization of these devices. Although there
is strong evidence for rhythmicity in seizure occurrence, very
little is known about the mechanism behind this oscillation.
This article concludes with early insights into the regulations
that may potentially drive this cyclical variability and future
directions.
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The unpredictability of seizures causes a great amount of distress
and disruption to life in people with epilepsy. With the advent of

digital EEG and inexpensive computers, there has been increasing
interest in the development of seizure-detection and seizure-
prediction devices to aide in the management of epilepsy. The first
publication on seizure prediction appeared in 1975 and used scalp
EEG to predict.1 With emergence of the theory of nonlinear
systems in the 1980s, researchers in the 1990s analyzed both scalp
and intracranial EEG using complex nonlinear dynamics to predict
seizures rather than using the conventional linear system.2 The
promise of these approaches led to the First International
Collaborative Workshop on Seizure Prediction held in Bonn,
Germany, in April of 2002. However, this early excitement was
soon followed by growing skepticism regarding earlier reports of
seizure prediction. An influential review published in 2007
challenged the feasibility of clinical applications based on seizure
prediction.2 Despite doubts, significant advances in the field of
seizure prediction continued, including the first prospective trial in
man in 2013 that demonstrated that long-term seizure prediction is
possible based on electrocorticography recorded by an implanted
device.3 Today, the field of seizure detection and prediction is
gaining momentum because of an improved understanding of
ictogenesis and seizure-prediction algorithms and increasing
amount of data from implantable devices. In this review, we
assess the state of the field and utility of available devices to
detect, predict, and forecast seizures.

WHY DO WE NEED SEIZURE DETECTION
AND PREDICTION

One of the most disabling aspects of epilepsy is the
unpredictable occurrence of seizures, which may cause serious

injuries to individuals. Bilateral tonic–clonic seizures are asso-
ciated with the highest morbidity and mortality. On average, 25%
of individuals experiencing bilateral tonic–clonic seizures will
sustain at least one serious seizure-related injury annually.4

Among people with epilepsy, risk of sudden unexpected death
in epilepsy is approximately one per 1,000 person-years. This
risk is greatest in individuals with poorly controlled seizures and
greatest in those having recurrent bilateral tonic–clonic seizures.
A nation-wide population-based case–control study concluded
that generalized tonic–clonic seizures during the preceding year
were associated with 27-fold increased risk of sudden unexpected
death in epilepsy. Among this cohort, sleeping alone increased
the risk of sudden unexpected death in epilepsy to 67-fold.5

Uncontrolled seizures also negatively impact individuals through
social stigma, limiting individuals’ day-to-day activities (e.g., no
driving), contributing to low employment and increased depen-
dency. Reliable detection and predication of seizuresdi.e.,-
identifying days of high-seizure riskdwould improve
individuals’ quality of life and assist clinicians in clinical
decision making to optimize the management of epilepsy.
Accurate seizure prediction and detection coupled with implanted
devices also offer possibility of seizure prevention in advance or
at the time of seizure onset.

SEIZURE DETECTION VERSUS PREDICTION
VERSUS FORECASTING

Seizure “detection” refers to the recognition of a seizure
clinically, for example, by accelerometer on the body or
electrographically by EEG. Seizure-detection algorithms largely
focus on early recognition of electrographic seizure onset, which
may occur a few seconds before clinical onset. Implicit in this
analysis is the assumption that the seizure development in EEG
follows a deterministic path, with the interictal EEG state
transitioning to a preictal state and ultimately to an ictal state.
In a closed-loop system, where seizure detection is coupled with
seizure treatment, for example, by electrical stimulation of brain
to terminate seizures, early seizure detection may increase the
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probability of aborting the seizure. Even in the absence of
intervention, early seizure prediction still serves to alert an
individual or care provider that a clinical seizure is imminent.
Conversely, seizure-prediction algorithms analyze the preictal
EEG in advance of electrographic seizure onset, to determine
when a future seizure will occur so that there is sufficient time to
prevent seizures.2 For example, prediction that a seizure will
occur in a few minutes may give sufficient time to use an inhaled
benzodiazepine to prevent the seizure. This deterministic nature
of seizure prediction (i.e., “a seizure will occur in 3 minutes”)
may be distinguished from the probabilistic nature of seizure
forecast (i.e., “there is a 50% chance a seizure will occur in the
next 12 hours”). Although seizures appear sporadic and unpre-
dictable in their occurrences, large chronic EEG data sets suggest
that seizures are organized in cyclic patterns with circadian (day–
night), multidien (multiday), and circannual (yearly) variations.6

Therefore, seizure-forecast algorithms aim to assess the proba-
bility of seizure occurrence in a particular time frame rather than
the precise time of next seizure occurrence. Identifying features
of circadian and multidian seizure risk based on features in the
EEG showing circadian or multidian variabilitydfor example,
changes in the frequency of interictal epileptiform discharges, or
changes in the spectral properties or cross-correlation between
locations recorded in the EEG signaldmay allow prediction of
those periods when there is a greater statistical risk of seizures.7

Development of prediction and forecasting algorithms must
overcome numerous challenges inherent to samples of biometric
signaldsuch as EEG or ECGdand algorithm development.
Predictions or forecasts of seizures from EEG signals may be
affected by the state of vigilance or levels of antiseizure
medications, and a relative paucity of long-term EEG recordings
that may each confound seizure prediction.6,8 What is needed are
long-term EEG data sets from individuals in their usual
environment. Adding information, for example, about circadian
rhythms and vigilance state improves algorithm performance.9

Algorithm development is also hindered by heterogeneous
outcome measuresdsuch as time horizon and specificity of the
predictiondthat complicate comparison of algorithm perfor-
mance. Although still incomplete, over the past decade, there
has been greater effort to standardize measures of prediction
performance. Even so, a recent review found that seven of 12
studies reported preictal changes 13 minutes or more before
seizure onset, up to an hour in some cases.10

The small sample size of seizure recording in publicly
available databases has also been a hindrance to the development
of statistically robust algorithms for seizure prediction or fore-
casting. Freestone et al.,11 as well as others, have observed that
because, of necessity, sample EEG data sets are relatively small,
few of algorithms published prospectively tested prediction
algorithms or used statistically appropriate controls. These
investigators went on to identify additional shortfalls of seizure
prediction algorithms inherent to the development of these data
sets using recording of individuals in epilepsy monitoring units.
As data sets contain only a few seizures for each individual,
algorithm development requires pooling of data across individ-
uals and potentially across different seizure types or circuits,
thereby losing unique features that might be useful in individuals
or for particular seizure subtypes. Because the number of

individuals and seizure mechanisms are larger and even more
heterogeneous than the test group used in algorithm develop-
ment, prediction algorithms may work less well. The conditions
of the inpatient unit also differ from seizure collected in the
“normal” state. Antiseizure medications are often reduced during
monitoring, and circadian routines are altered.

Open-source repositories of long-term scalp and intracranial
recordings have been a valuable innovation in the development
of seizure prediction and forecasting tools, providing standard-
ized data sets that allowed comparison of performance of
different algorithms. However, as noted, the small size of these
open databases was also a limitation on the advances possible.
The Freiburg data repository, for example, contained intracranial
EEG (ICEEG) recordings for 21 individuals with drug-resistant
focal epilepsy. Seizure prediction with 100% accuracy and low
false-positive detections were reported for algorithms trained on
this data set.7 However, it has been observed that even long-term
recordings contained in the Freiburg repository contain only
a few seizures per individual and data recording durations
comprise days, rather than weeks or months. With a relatively
small number of individuals, seizures, and recordings days, there
is a risk of overtraining algorithms to recognize the recorded
seizures in the small data setdso called over-fitting, only to see
the algorithm perform poorly when faced with novel seizure
recordings. Indeed, algorithms developed on long-term EEG
recording with dozens or hundreds of seizures per subject have
performed with accuracies substantially lower than those re-
ported with the Freiburg data set.7

Size of EEG data sets has been a key limitation for the
development and testing of seizure prediction and forecasting
tools. For many individuals living at home, seizures may occur
once or twice monthly or even less frequently. Yet EEG data sets
are largely drawn from hospitalized individuals in epilepsy
monitoring units where antiseizure medications have been
reduced to increased likelihood of recording a seizure, and
recording duration is only a few days. Changes in seizure
medication levels and sleep patterns or other circadian rhythms
may each result in EEG changes that confound prediction and
forecasting algorithms. The Freiburg data set has been super-
seded by more extensive data sets such as the European Epilepsy
Database (http://epilepsy-database.eu/) that is in development;
currently, it offers scalp and ICEEG recordings from 60
individuals, with future plans to offer recordings from more than
200 individuals, comprising more than 2,500 seizures and more
than 45,000 hours of EEG recording. It remains to be seen if the
data collected in this data set sufficiently reflect the conditions of
regular life lived by individuals with epilepsy to advance
prediction and forecasting.

On the horizon are implantable and wearable devices that
promise prolonged recordings at the cost of reduced number of
recording channels. The development of chronic subcutaneous
recording devicesdalong with existing intracranial responsive
neurostimulation (RNS) devices able to record EEGdpromises
access to individualized data collected over a period of months or
years.11,12 Deep learning algorithms that detect and learn features
relevant in each individual without prior knowledge of patterns
would allow training of algorithms customized to each individ-
ual.11–13 Results from competitions between the teams to develop
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the most robust seizure prediction using standardized data sets
indicate that the most successful approaches use a multitude of
pattern detectors. The combination of detectors that are most
informative will differ from individual to individual, so using
multiple detectors increases the likelihood of success.14,15

EEG-Based Prediction and Forecasting Algorithms
EEG-based algorithms use features of the EEG to assess the

likelihood of seizure in a determined time horizon. Features may
be extracted from the time series data or from the frequency
spectra or phase-space features, the latter being measure of
dynamical properties embedded in the EEG signal. Time-domain
features of EEG include amplitude, variability, and regularity of
individual channel time series and measures of synchronicity
between EEG channels. Frequency-domain analysis examines
the changes in spectral content of EEG signals over timedoften
with wavelet analysisdto identify patterns associated with
increased seizure likelihood. Most investigators use the pattern
of time- or frequency-domain features to infer the likelihood of
seizure, i.e., inferring interictal versus preictal brain statesdfrom
EEG signals alone. Some investigators have inverted this
approach beginning with a computational model of critical neural
circuits, such as hippocampus or neocortex, to predict expected
EEG features and then used presence or absence of these features
to classify an individual EEG as interictal or preictal.10 Niknazar
et al.16 have performed a survey of a wide number of EEG
features used for seizure detection. These investigators reported
that phase space algorithms that identify the pattern of evolution
of seizure discharges performed best in detecting seizures.

A proof of concept validating the feasibility of seizure
prediction in humans was conducted in the NeuroVista study.3

Fifteen individuals received a standardized electrode implant to
record and transmit ICEEG to a handheld receiver. Eleven
individuals continued to the next phase of the study where
seizures were recorded so that prediction algorithms could be
adjusted and customized for the individual. Nine individuals
entered the final phase of the study, testing the accuracy of the
individualized prediction algorithms over the course of four
months. Prospective prediction accuracy was better than chance
in all nine individuals. Three individuals had high seizure-
prediction sensitivity. Sensitivity was 86% in one individual who
experienced 13 seizures in the observation period. Sensitivity
was 100% in two individuals who experienced three seizures
each in the observation period. Time spent under warning of high
seizure likelihood was 27%, 31%, and 3%, respectively. In the
other six individuals who entered the final phase of the study,
sensitivities ranged from 54% to 71%, and time spent under
warning of high seizure likelihood was 15% to 41%.3,14

Non–EEG-Based Seizure Prediction and
Forecasting Algorithms

Compared with EEG-based prediction and forecasting,
relatively little work has been done predicting seizures indepen-
dently of EEG measures. The advent of wearable devices,
including motion and biometric recorders, may open additional
sources of data that may contribute to seizure prediction. One
readily available source of data is the individual themselves.

Cousyn et al., used a review of the literature to identify the most
common reported prodromal symptoms. Typical prodromal
symptoms included, for example, trouble concentrating, reading,
speaking, or writing, noise or light sensitivity, irritability, or poor
mood, to name only a few. During inpatient evaluation averaging
10 days, subject competed a daily survey of 24 symptoms, rating
each with a 4-level Likert scale ranging from “not at all” to “very
much so.” Surveys were sorted into preictal days, where a seizure
occurred within 24 hours of the survey, or interictal days where
no seizure occurred within 24 hours. Prediction algorithms were
trained on 70% of the days recorded and then tested on the
remaining 30% of days. Linear regression techniques were
inferior to machine learning “support vector machine” algo-
rithms, with the latter method able to predict seizures with 70%
accuracy (sensitivity 72%, specificity 68%) with only structured
reporting of subjective state by individuals. As with many EEG-
based studies, these investigators acknowledge that the use of
inpatient reports, with only a short period of observation
available, was a limitation of the study. What is more, subjects
had on average 3.8 seizures during the evaluation, an insufficient
number to optimize the prediction algorithm to each individual.17

Taking into consideration the environmental factors, such as
sleep, weather, and temporal features such as time of day or time
of year, may also independently improve seizure forecasting.
Payne and colleagues examined the occurrence of seizures in
eight individuals in relation to these variables using long-term
recordings acquired over months in the NeuroVista study.
Although these subjects participated in the NeuroVista study,
intracranial EEG was used as a gold standard for seizure
occurrence, but EEG-based algorithms were not part of the
prediction analysis. Payne et al.,18 found that seizure could be
predicted above chance by examining duration of sleep in five
individuals, weather cycles in two individuals, and temporal
features in six individuals, and combining features improved
performance in a substantial proportion of individuals.

Vandecasteele et al.,19 compared the sensitivity of seizure
detection algorithms applied to three different standardized data
sets of intracranial EEG with and without inclusion of ECG
signals and found that inclusion of ECG increased detection
sensitivity to 8% and 11% in two of three seizure data sets
examined. Analysis of long-term recording of heart rate mea-
sured using wearable technology has similarly been found to help
forecast periods of increased seizure risk.20 Karoly et al.,
examined heart rate data recorded using smartwatch technology
and correlated changes in heart rate with seizure diary data.
Investigators compared 31 individuals with uncontrolled epilepsy
and 15 healthy controls. Average duration of recordings was
12 months, with SD of 5.9 months. Individuals in the seizure
group averaged 72.4 seizures during observation with a wide
range in seizures counted (0–416 seizures). Nineteen individuals
had 20 or more seizures during the observation period, allowing
statistical correlation with circadian variations in heart rate. Heart
rate variations were present in all participants in both groups,
whereas weekly cycles and monthly cycles were present in 25 of
46 and 13 of 46, respectively. In 19 individuals with enough
seizures to analyze, 17 (89%) had seizures that were more likely
to occur locked to at least one heart rate cycle. Fourteen were
locked to a circadian cycle, 10 were locked to multiday cycles,
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and eight showed influence of both circadian and multidian
cycles. Merging data streams from long-term seizure diaries or
recordings of biometric data including sleep, temperature, and
activity, environmental data, and finally either scalp or intracra-
nial data hold significant promise in improving seizure fore-
casting to a level that will be clinically useful to people with
epilepsy. The explosion in wearable technologies, discussed later
in the text, offers a growing number of data sources with the
potential to better distinguish days of increased seizure risk from
days of low risk.21

DEVICES AVAILABLE AND THEIR USE FOR SEIZURE
DETECTION, PREDICTION, AND FORECASTING

Hospital-Based Devices
Both surface and intracranial recordings data have been

studied for seizure prediction, although most studies favor
intracranial recording because of higher signal-to-noise ratio,
better spatial resolution, minimal artifacts, and potential to record
directly from the seizure-onset zone.2

Noninvasive Ambulatory Devices

Self-Reported Seizure Diaries
To facilitate self-monitoring of seizures, seizure-related

symptoms, and therapies, free web-based applications, such as
My Epilepsy Diary (http://www.epilepsy.com/seizurediary) or
Seizure Tracker (https://seizuretracker.com), provide cloud plat-
forms where individuals may keep a seizure diary to share with
their doctors to better guide individual treatment plans.22 Several
studies have demonstrated the utility of seizure diaries and other
self-monitoring exercises in seizure prediction and forecasting.23–25

Noninvasive Devices
With technology advancements and increasing awareness and

interest in personalized health, there has been a surge in mobile and
wearable devices,26 including products to detect and predict
seizures. Wrist-worn accelerometers with predetermined algorithms
and thresholds have robust evidence for the detection of generalized
tonic–clonic seizures.27 Bed alarms comprised movement sensors
under the mattress that have proven useful in detecting nocturnal
motor seizures.28 Surface electromyography alerts seizures by
detecting seizure-related muscle activity and distinguishing it from
physiological muscle activation.29 Automated video analysis has
also proven sensitive in detecting generalized tonic–clonic seiz-
ures.30 Combining multimodal measurements that employ a combi-
nation of sensors to detect changes in biosignals like heart rate,
oxygen saturation, respiratory, and galvanic skin responses with the
use of accelerometers hold promise in increasing likelihood of
noninvasive seizure detection.31,32

Implantable Ambulatory Devices

Vagal Nerve Stimulation
Vagal nerve stimulation involves the use of an implanted

pacemaker-like device that is programmed to intermittently
stimulate the left vagus nerve with electrical impulses through

two electrodes.33–36 The device was first approved in the EU in
1994 without the ability for seizure detection. Then, in 2014,
a responsive vagal nerve stimulation device was introduced into
the market that delivers automated stimulation in response to
rapid heart rate, a prevalent symptom at seizure onset. This
closed-loop design of vagal nerve stimulation enables the device
for potential use in detecting seizures and improves its therapeu-
tic value for the treatment of epilepsy.37

Subcutaneous and Subgaleal EEG
There has long been a need for long-term ambulatory EEG

where seizures may be recorded and accurately quantified in
individuals’ day-to-day milieu. 24/7 EEG SubQ produced by
UNEEG Medical in Denmark is a novel portable EEG acquisi-
tion system that is composed of three subcutaneously implanted
leads and an external logging device. Only local anesthesia is
required for the implantation. The device can record for
approximately three months, “ultra-long-term monitoring,” to
distinguish it from “long-term monitoring,” where typical
durations are less than one month. Nine participants with
temporal lobe epilepsy were implanted with a beta-version of
the 24/7 EEG SubQ in this subcutaneous EEG trial with three
months of continuous home monitoring of seizures without any
restrictions on activities. This first study demonstrating that real-
life ultra-long-term monitoring with subcutaneous EEG is
feasible, safe, and well tolerated, has increased optimism for
a new era of home-based monitoring.38 Similar to subcutaneous
EEG, there have been studies exploring the use of subgaleal EEG
for long-term seizure monitoring.39,40 Subgaleal EEG recording
demonstrates similar signal characteristics to scalp and sub-
cutaneous EEG recordings, with the notable difference in that SG
recordings, given their uniquely positioned electrodes, are less
affected by artifacts from muscle activity in the face, jaw, and
neck or by motion.40 Pacia et al., reported reliability of single-
channel subgaleal EEG in identifying focal and secondarily
generalized seizures that was validated by simultaneous ICEEG
recording. A single, six-contact, subdural strip was implanted at
or near the cranial vertex in 21 epilepsy patients who were at the
same time undergoing ICEEG for up to 13 days. Three EEG
experts blinded to the ICEEG reviewed 219 samples of 10-
minute subgaleal EEG recordings with 81 seizures of temporal,
extratemporal, or simultaneous temporal/extratemporal onsets.
Study showed that readers correctly identified 98% of temporal
and extratemporal onsets that were validated by ICEEG record-
ing, with 98% sensitivity and 99% specificity.40 Subcutaneous
and subgaleal EEGs thus far have been used as tools for seizure
detection, but their ability to collect long-term recording make
them valuable for potential seizure forecasting.

Responsive Neurostimulator
The RNS system is the first responsive (closed-loop)

therapeutic device that is cranially implanted with two four-
contact intracranial electrodes that continuously monitor and
record cerebral electric activity from or near the epileptogenic
focus/foci. The device may be programmed to recognize seizure
patterns unique to the person and, upon detection of such
patterns, to deliver electrical stimulation aimed at aborting an
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incipient seizure. The RNS system also allows for long-term
intracranial recording of interictal epileptiform activity and
electrographic seizures.41 In multiple clinical trials of the
NeuroPace RNS System, 256 participants with drug-resistant
focal epilepsy have been implanted with the RNS system, and
12 years of intracranial data have been collected and analyzed. In
these recordings, there are both circadian and multidian oscil-
lations in interictal activity. Seizures tend to occur at particular
phases of these rhythmic cycles.42,43 This observation raises the
possibility that it may be feasible to use RNS data to forecast in
advance days with greater probability of seizure occurrence.

Canine Data (Chronic ICEEG)
Seizure forecasting devices with ICEEG recording have

been tested using canine epilepsy model. One study implanted an
ICEEG recording system with four 4-contact strips that recorded
and wirelessly relayed data to an external advisory device placed
in a harness on the dog’s back. The advisory device signaled
seizure detection or prediction through visible or audible alarms
and through email and text messages. Three dogs with naturally
occurring focal epilepsy were implanted, and intracranial data
were collected over 15 months. The study found a seizure
forecasting algorithm performed significantly better than chance
predictor, suggesting that seizures occurrence was not random,
supporting the feasibility of seizure forecasting.44 Other studies
have replicated similar findings.45,46

NeuroVista
The results from the NeuroVista trial are discussed in a prior

section. The NeuroVista device was a noncommercialized sei-
zure advisory system manufactured by NeuroVista Corporation,
Seattle, WA, that is no longer in operation. The advisory system
consisted of two electrode arrays with 16-contacts implanted over
the cortical surface presumed to be the epileptogenic zone and
a telemetry unit implanted under the clavicle, sampling 16
channels of EEG. The telemetry unit wirelessly transmitted to
a portable handheld advisory device that displayed visual and
auditory signals indicating the likelihood of a seizure in the next
few minutes or hours. The advisory device was also capable of
storing EEG recording. NeuroVista trial enrolled 15 participants
with drug-resistant focal epilepsy. The study concluded that the
device predicted seizures with 65% to 100% sensitivity.3

Participants wore the device for up to two years, and the long-
term intracranial data were also used to forecast seizures,
confirming the presence of circadian pattern to seizures.47 Further
analysis of the data set also revealed that interictal epileptiform
activity also fall under a circadian regulation and that the
probability distribution of interictal activity and seizures were
quite similar, suggesting that the two phenomena may not be
independent.48

Challenges and Limitations
In recent years, there have been increasing commercialized

popularity among individuals and media for the use of non–EEG-
based seizure detection mobile and wearable devices. However,
despite enthusiasm in the nonscientific community, the use of
devices by clinicians has not gathered equivalent momentum

because of the lack of diagnostic accuracy. Seizure detection
using mobile and wearable devices has the best evidence for
generalized tonic–clonic seizures (highest sensitivity and lowest
false alarm rate), limited evidence for other motor seizures, and
scarce evidence for nonmotor seizures.49

It is well-established that individuals and caregivers are
unreliable in reporting seizure frequency, often underreporting
because of unawareness of seizures50; the need for automated
ambulatory seizure detection is evident. There is strong evidence
for the validity of EEG-based seizure detection,49 but individuals
do not like the visibility of scalp electrodes, and implantable
intracranial devices are invasive and often require extensive
workup to determine precise placement of the electrodes.
Minimally invasive ultra-long-term subcutaneous recording
may launch a new era in ambulatory monitoring, but it is not
without disadvantages such as reduced spatial resolution com-
pared with standard scalp-EEG.51 Future trials and investigations
are in need to further explore and establish the clinical utility of
subscalp EEG. Cyclic patterns of seizures concluded from
chronic EEG data sets from NeuroPace RNS System, Neuro-
Vista, and subcutaneous EEG trials were based on participants
with focal epilepsy. It is unclear whether generalized epilepsy
will manifest similar cyclic variations. There are intricately
intertwined and complex dynamics between external seizure
precipitants and internal regulators of seizure cycles. Behavioral
and environmental precipitants, such as alcohol and weather,
may arise to influence or disrupt the endogenous mechanisms
driving the rhythmicity of seizures, promising further challenges
to reliably forecast seizures outside of controlled studies.52

CONCLUSIONS
The seemingly random occurrence of seizures is often the

cause of fear and uncertainty in individuals with epilepsy. The
ability to reliably predict and forecast seizures would bring about
a monumental change in the management and treatment of
epilepsy. There have been many advances in this seizure
prediction over the past decade, but larger data sets from chronic
EEG recordings are needed to gain further insights into the
circadian and multidien cycles of seizure. These insights will be
critical in constructing clinically applicable algorithms for seizure
prediction and forecast. Additional innovation is needed to
develop devices that are (1) minimally invasive or noninvasive,
(2) well concealed and comfortable, and (3) cost-effective.

There is now solid evidence for the presence of rhythmicity
in the multiple time scales in seizure occurrence, but the
mechanism underlying such rhythmicity remains unclear. Many
physiological events exhibit cyclic behavior with peaks and
troughs, modulated by intrinsic pacemakers. Some of the best-
studied examples include hormonal regulations of menstrual and
sleep–wake cycles. Increasing studies in the last few years have
proposed possible molecular oscillators underlying the circadian
and multidien variations in epilepsy.53–56 The proposed concept
is that there are oscillations in genes that respond to external
stimuli, like light or food, leading to circadian variation in protein
expression, as well as those that respond to internal stimuli that
result in slower multidien variation in protein expression.

Seizure Detection, Prediction, and Forecasting A. Fu and F.A. Lado

Copyright © by the American Clinical Neurophysiology Society. Unauthorized reproduction of this article is prohibited.

clinicalneurophys.com Journal of Clinical Neurophysiology Volume 41, Number 3, March 2024 211



Cascade of changes to the molecular and cellular pathways then
follows as the downstream effect of rhythmicity in protein
expression, leading to the regulation of the multitemporal cycles
of seizure activity. Future studies are needed to further explore
this revolutionary framework that opens door to novel bio-
markers and potential precision medicine in epilepsy.
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